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THE ORIGIN OF COMPLEXITY

LEON 0. CHUA
Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley,
Berkeley, CA 94720, USA

E-mail: chua@eecs.berkeley.edu

Nature abounds with complex patterns and structures emerging from homogeneous
media operating far from thermodynamic equilibrium. Such phenomena, which are
widely observed in both inanimate (non-biological) and biological media, can be
modeled and studied via the CNN (Cellular Neural/Nonlinear Network) paradigm
in an in-depth and unified way. Whether a homogeneous medium is capable of
exhibiting complexity depends on whether the CNN cells, or its couplings, is lo-
cally active in a precise mathematical sense. This local activity principle is of
universal generality and is responsible for all symmetry breaking phenomena ob-
served in a great variety of non-equilibrium media ranging from the emergence of
negative differential conductance in bulk semiconductor materials (e.g., Gallium
Arsenide in Gunn Diodes) to the emergence of artificial life itself. The main re-
sult of this paper consists of a set of explicit analytical conditions for calculating
the parameter ranges necessary for the emergence of a non-homogeneous static or
dynamic pattern in a homogeneous medium operating under an influx of energy
and/or matter. The resulting "complexity related" inequalities are applicable to
all media, continuous or discrete, which have been mapped into a CNN paradigm.

One of the most interesting aspects of the world is that it can be
considered to be made up of patterns. A pattern is essentially
an arrangement. It is characterized by the order of the elements
of which it is made rather than by the intrinsic nature of these
elements.

Norbert Wiener

1 Introduction

How does the leopard get its spots? How does the zebra get its stripes? How does
the fingerprint get its patterns? How does an ant colony manage to self-organize
into an impressive pattern of activities when individual ants are known to be quite
dumb? How does an initially mixed distribution of black and white population in
a housing community manage to redistribute over time into segregated black and
white neighborhoods with well-defined boundaries?

How does a bee sting at a finger tip trigger the propagation of an electrical
impulse to the brain of a healthy person, and how does this distress signal fail
to propagate in the nerves of patients suffering from multiple sclerosis? How do
some members of a colony of starving amoeba send out a target and spiral wave
signal to attract neighboring amoebae and transform them into spores, and then to
regenerate into amoeba again when food (bacteria) becomes available? How does a
"scroll wave" get generated in the cardiac muscle by the inadvertent presence of an
electrical impulse during a vulnerable window of a few milliseconds, often leading
to sudden cardiac death?
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The above phenomena are some manifestations of a multidisciplinary paradigm
called emergence, or complexity. They share a common unifying principle character-

istic of dynamic arrays, such as cellular neural networks, namely, interconnections of
a sufficiently large numbers of simple dynamical units, which can exhibit extremely
complex, synergetic, and self-organizing behaviors. The common denominator in
all of these pattern formation and active wave propagation phenomena is the pres-

ence of an active medium, powered by a constant supply of external energy. For
example, in the brain, the active medium is provided by a sheet-like array of mas-

sively interconnected excitable neurons whose energy comes from the burning of
glucose with oxygen. In cellular neural networks, the active medium is provided

by the local interconnections of active cells, whose building blocks include active
nonlinear devices (e.g., CMOS transistors) powered by batteries.

Research on Emergence and Complexity has gained immense momentum during
the past decade1 -15. The fundamental problem is to uncover nature's secret mech-
anisms which are responsible for the self organization and spontaneous emergence
of many stable complex (static and dynamic) patterns' in homogeneous media op-
erating far-from-thermodynamic equilibrium 16. Indeed, nature is abound with all
sorts of patterns ranging from regular snow flakes to chaotic brain waves 17 ,18 ,19 .

Understanding and controlling such patterns is essential for designing new genera-
tions of brain-like molecular devices and systems endowed with artificial intelligence
and self-repair capabilities.

The homogeneous media alluded to above consists usually of an active bulk
medium (e.g., bulk materials with negative resistivity, such as Gallium Arsenide in
Gunn Diodes20 , nerve membranes, heart tissue layers, chemical mixtures in stirred
reactor tanks, etc.) modeled by one or more nonlinear PDE 's (partial differential
equations) where the spatial coordinate, as well as the state variables, are repre-
sented by continuous real numbers. What is truly fascinating is that while these
active media are completely unrelated-they can range from inanimate materials
to living tissues2--yet the patterns they exhibit tend to resemble each other under
appropriate initial and boundary conditions. It makes sense therefore to hypothe-
size that a common mechanism must be responsible for the emergence of each type

of patterns (e.g., Turing patterns, spiral waves, etc.)b. This remarkable observa-
tion motivates the development of a unified paradigm capable of exhibiting most, if
not all, static and dynamic patterns (i.e., dissipative structures) in active homoge-
neous media operating far from thermodynamic equilibrium. Such a paradigm has

been developed recently and is the subject of a recent treatise 22. The paradigm is
dubbed the CNN, an acronym for cellular neural networks when used in the context
of brain science, or cellular nonlinear networks, when used in other more general
contexts.

A CNN is defined by two mathematical constructs:
1. A spatially discrete collection of nonlinear dynamical systems called cells,

where information can be encrypted into each cell via 3 independent variables

aSuch patterns are called dissipative structures by Ilya Prigogine1
4 

because energy must be con-
tinually supplied and dissipated in order to maintain such structures.
bFor related works on emergence and complexity from different perspectives, the reader is referred

to the very readable expositions by Cricks, Eigen'
0

, Gell-Mann
7

, and Prigogine
14

.
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Figure 1. A CNN with a cutout view which exposes an inner cell Cijk and its sphere of influence
Sijk. Only those cells Cf3j, located within Sikare coupled to cell Cijk.

called input, threshold, and initial state.
2. An interconnection law relating one or more relevant variables of each cell

Cij to all neighbor cells Ckj located within a prescribed sphere of influence Si (r)
of radius r, centered at Ci1 .

In the special case where the CNN consists of a homogeneous array, and where
its cells have no inputs, no thresholds, and no outputs, and where the sphere of
influence extends only to the nearest neighbors (i.e., r = 1), the CNN reduces to
the familiar concept of a lattice dynamical system from mathematics.

The schematic diagram of a 3-dimensional CNN is shown in Fig. 1, where a
typical cell Cijk is highlighted along with its sphere of influence Sijk. Let us consider
some examples.
Example 1. Emergence of 2-Dimensional Knot Patterns

Suppose each cell in Fig. 1 consists of a Chua's circuit with three external ter-
minals (one of them being the ground reference terminal), as shown in Fig. 2. Since
each cell can interact with its neighbors only through the 2 ungrounded terminals,
each one coupled to a corresponding node of a neighbor cell via a resistor, each
ungrounded terminal serves as a port where energy can flow into or out of the cell.
Consequently, the 3-terminal circuit cell in Fig.3 is also called a 2-port in electri-
cal engineering. Suppose each cell in Fig.2 is coupled to its 6 nearest neighbor cells
(two along each coordinate axis) via positive linear resistances, as depicted in Fig.2.
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Figure 2. Each cell in this 3-dimensional CNN is a Chua's oscillator with 3 external terminals,
or 2 ports, with a common ground. Each external terminal (except the ground), or port, of each
cell is connected to a capacitor inside the cell, and coupled to a corresponding terminal of the 6
neighboring cells via 6 linear passive resistors.

If all elements inside the cell shown in the inset are passive, and if the nonlinear
resistor is not locally active (e.g., a pn junction diode) in the sense of Definition 1
in Sec.4.2, then it can be shown that given any initial voltage distributions, all
node-to-datum voltages must tend to zero as t - ci. In other words, this CNN
must have a homogeneous (uniform) solution at all nodes. This homogeneity is
generally expected since all cells in Fig.7, and their couplings, as well as boundary
conditions, are identical, and there are no input sources.c

'We assume throughout this paper that the CNN has no input sources and has a symmetrical
boundary condition (e.g., a zero-flux or Neumann boundary condition), since the central concept
of emtergence implies that any non-homogeneous output pattern must emerge via self organization,
and not through any external input, or non-symmetrical boundary conditions.
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Figure 3. Three-dimensional knot voltage distribution patterns from a CNN cube made of Chua's
oscillator cells, coupled via a linear passive resistive grid. (a) A Hopf-link pattern. (b) A 3-knot
pattern. (c) A simple helix. (d) A double helix.

However, if the nonlinear resistor is chosen to be a Chua's diode 23, as shown
in the inset in Fig.2, then for the fixed choice of circuit parameters 22, the 4
distinctly different 3-dimensional structures in Fig.3 can be obtained in steady
state by choosing the 4 different sets of initial conditions 22 Note that this CNN
is symmetrical with respect to the center of the CNN cube in Fig.2 and there
are no inputs. Yet we have a non-uniform constant steady state node-to-datum
voltage distribution ! In the parlance of complexity theory, we say the homogeneous
CNN undergoes a symmetry breaking and any non-homogeneous node-to-datum
steady state voltage distribution is called a pattern, or a dissipative structure if
the medium is non-conservative in the sense that energy dissipation is essential to
maintain the structure.
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(a) (b)

Figure 4. (a) A straight scroll vortex. (b) A twisted scroll wave.

Example 2. Emergence of 3-Dimensional Scroll Waves
Consider the same CNN cube as in Fig.2 except that in this case, only the port

voltage across the nonlinear resistor(Chua's diode) is coupled to corresponding
node voltages of the 6 neighboring cells. This is equivalent to open circuiting the
second port (on the right) of the Chua's oscillator in Fig.2, so that each cell reduces
to a one-port circuit with 2 external terminals (including the ground reference
terminal). Using the circuit parameters, and the initial and boundary conditions 22,
we obtain the two scroll wave structures shown in Figs.4(a) and 4(b), respectively,
for one instant of time. Unlike the stationary structures shown in Fig.3, the scroll
waves in Fig.4 represent an active nonlinear wave which evolves continuously with

a scrolling structure at all times.

Example 3. Emergence of 2-Dimensional Spiral Waves
If we consider a 2-dimensional version of the preceding CNN cube, we would

obtain the simplified 2-dimensional CNN shown in Fig.5, where each "Chua's
oscillator" -one-port is represented by a 2-terminal black box, coupled to its neigh-

bors by 4 linear positive resistances, two along each coordinate axis. Using the
circuit parameters and the initial and boundary conditions given in 22, we obtain
the spiral wave structure shown in Fig.6. Again, this is a dynamic pattern which
rotates continuously for all times.
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Figure 5. A two-dimensional CNN made of Chua's oscillator cells coupled via a single layer of
linear resistive grid.

2 Mapping PDE Into CNN

A vast majority of active homogeneous media which are known to exhibit com-
plexity in the form of dissipative structures are modeled by a reaction diffusion
PDE 14-18:

19 a2X, a92 Xi 2
-at fi(Xi, X2,.,n) i \aX2 a+ a z2

i = 1,2,...,n(1)

where x = (X1 , x 2,..., xn)T are state variables, (x, y, z) are spatial coordinates,
f(x) = (fi (x), f 2 (x), ... , f,,(x)) is a nonlinear vector function of x called the kinetic
term, and D 1 , D 2 , ... , Dn are constants called diffusion coefficients. Replacing the
Laplacian in Eq. (1) by its discretized version

a2 x , a2x 0 22x ,
±X- + + aZ-2 (2)
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where

V2(x,ý,,,)- Ti x(a + 1 ,7)+ xi (a - 1,3 )+ xi (a,/3 + 1, -y) + xi (a,,3 - 1, -y) +

xi(a,,3, -y + 1) + x•i(a,)3, 7 - 1) - 6xi(a,)3, -y)

i= 1, 2,...,n (3)

is the discrete Laplacian operator on the ith component xi of the state variable
x = (xi, x2, ... , xn)T about the grid point with spatial coordinate (a,,/3, y)- We
obtain the following associated Reaction Diffusion CNN equation

i(c,,)3,/) = fi (xi(a,/3,7),x 2 (a,3, 7), ...,x.(a,3, 7)) + DnV 2 (x.,0,7)i (4)

where i = 1, 2,..., n; a = (1, 2, ... , Na),/3 = (1, 2, .. ,N ), and y = (1, 2, .. ,Ny).

Here xi(a,/3, -y) denotes the state variable x. located at a point in the 3-dimensional
space with spatial coordinate (a, /3, y). Observe that the Reaction Diffusion CNN
equation (4) consists of a system of N = nNaNONy ordinary differential equations
(ODE's).

We will henceforth refer to the process of transforming a PDE into a CNN
equation as mapping a PDE into a CNN. Table 1 shows the mapping of 4
well-known reaction diffusion PDE's.

Table 1. Mapping Reaction-Diffusion PDE into a Reaction Diffusion CNN.

FitzHugh-Nagumo CNN Equation FitzHugh-Nagumo PDE

t= U V - u -- + 31 2

+D 1 [uj+i + ui-I - 2ui] av
b = -E[ui - bvi + a] A-T =-[Eu - bv + a]

Brusselator CNN Equation Brusselator PDE

uij = a - (b + 1)uij + u?.vij + D1 [ui+j U 2 a2U 2
+U-,1 +Uiji ~p T3 ~ ] a - (b-+I- )u + u v + D, + -4~

+ui_•,j + ui,j+l + ui,jl - 4uij] aX= a-a~)+2+ •/x •y2

bui y - u?,Vij + D2 [vi+i,j av 2 v
Z) -=bu-u v+D 2+vi-j+vi,j+l + vi,j-l -4viy] t I uX2 aty2

Meinhardt-Gierer CNN Equation Meinhardt-Gierer PDE

u __j = --_ - 3uij + D1 [ui+1,j + ui-i,j au au 2  Fa2u a2 U

+uij+l + ui,j-1 - 4uij] av 2 a 2V a2V
i = au? - ^j + D2 [Vi+ I + Vi, - = au - yv + D2 - -+ I

23iyjj ,i at D X2 a ay2
-v

+vi,j±i + vi~j- - 4vijl
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Figure 6. Three-dimensional view of a steadily rotating spiral wave at one instant of time. The
vertical axis (perpendicular to the plane) represents the capacitor voltage across Chua's diode and
the horizontal axes (on the plane) are the spatial coordinates.

Oregonator CNN Equation Oregonator PDE

6ijk = Uijk + Vijk - k - uijkvijk + 2u

Di [Ui+l,j,k + Ui_ l,j,k + Ui,j+l,k at
+Ui,j-l,k + Uij,k+l + Ui,j,k-1 +D1 + 92+ 2 u

-6uijk] 9v

ýijk= -Vijk + /
3
Wijk - UijkVijk + - -V + OW - UV

at
D 2 [vi-1,j,k + Vi-l,j,k + Vi,j+1,k [a2V 2V a 2

V

+Vi,jgl,k + Vi,j,k+l + Vi•j,k-1 +D 2 I x19+2 2+ 1z 21
-6vijk] aw

Wbijk = Uijk - Wijk + D 3 [wi+ 1 j,,k t -t U-

+Wi-l,j,k + Wi,j+l,k + Wi,j-l,k +D 3 L aX2 + a + (z 2 J
+wi,jk+l + Wi,j,k-4 - 6Wijkl
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Reaction diffusion PDE's form an important, albeit relatively small, subset of
the universe of all nonlinear PDE's. For any other nonlinear PDE, the spatial
derivative (of any order) of any state variable ui(t; x, y, z) at time t and spatial
location d (x, y, Z) E R3 can be approximated to any desired accuracy 24,25 by
finite differences involving only the values of the state variable ui (t; a', 03', y') lo-
cated at a finite number of lattice points (x, y, z) = (a',/3', -y') E Sa•oy, where
(a, /3, -y) E Z3 denotes the "discrete" coordinates of a 3-dimensional lattice Z3 , and
S,,,3 (r) denotes a neighborhood of radius r, centered at (a, /3, -y). Hence, given
any nonlinear PDE, we can generate many (depending on the desired accuracy)
approximate discretized systems of ODE's in terms of a 3-dimensional array of
state variables xi (a,/3, 7), a = 1, 2,..., N, /3 = 1, 2, ... , No, -y = 1, 2,..., N,. More-
over, since all finite-difference operations involve only variables located within a
local neighborhood, we can always decompose' the discretized system into a compo-
nent (the isolated cell) which involves only ui(t; a, /3, -y) at the lattice site (a,/3, 'y),
and another component( the cell coupling) which involves all neighboring cells
(a',/3', /') C S.p.(r). In other words, given any nonlinear PDE, we can induce
many associated CNN equations-- the examples given in Table 1 represent the sim-
plest examples. Although it is not true that the qualitative behaviors of a nonlinear
PDE and its associated CNN equation are always the same-the propagation fail-
ure phenomenon is a case in point, extensive computer experiments have shown
that for the vast majority of cases, the respective solutions can be made virtually
indistinguishable by choosing a sufficiently large array size and by optimizing the
CNN cell and coupling parameters 22.

It is important to observe that partial differential equations are merely mathe-
matical abstractions of nature. The concept of a continuum is in fact an idealization
of reality. Even the collection of all electrons in a solid does not form a continuum
because much of the volume separating the electrons from the nucleus of atomsf
represents a vast empty space! In fact, recent works by Smolin and his colleagues
have proved that "the spectrum of the volume of any physical region is discrete""27.
In particular, quantum mechanics implies that at extremely small distances even
space is made of discrete bits!

3 Local Activity Is the Origin of Complexity

Let AV be a 2-dimensional CNN associated with a homogeneous medium. By defini-
tion, a CNN is defined uniquely by cells and their interactions. Let us identify each
cell C(j, k) as a nonlinear m-port defined by its cell dynamics, where m is equal to
the number of state variables which are directly coupled to its neighbors, as depicted
by the "m" external (ungrounded) terminals attached to each cell C(j, k) in Fig.7
for a reaction diffusion CNN. Note that the cell C(j, k) may contain additional state

dTo avoid clutter we restrict our discussion to the 3-dimensional Euclidean space R 3 . The same

formulation is valid for any dimension.
eIn most cases, the decomposition consists of just the superposition of these two components.

However, more complex decompositions (e.g., nonlinear functional compositions) may be required

for some nonlinear PDE's.
JThe ratio between the diameter of the electron orbits in an atom to the diameter of its nucleus
is of the order of 105.
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variables which are not directly coupled to its neighbors and hence are suppressed
in Fig.7 to avoid clutter.s

Let us identify next the couplings from cell C(j, k) to all cells within the 3 x 3
sphere of influence Sjk centered at (j, k) by a y-port Fjk. For the one-diffusion
reaction diffusion CNN shown in Fig.5, an isolated cell C(j, k) and its 4 coupling
resistors are shown in Fig.8(a). Note that the 5-terminal coupling circuit, or -y-port
Fjk (7 = 4 in this case), in Fig.8(a) can be redrawn into the form of a grounded 4-
port (i.e., with a common ground terminal) in Fig.8(b). For the reaction-diffusion
CNN depicted in Fig.7, the 'y-port rjk is composed of m identical grounded 4-
ports(with node (j, k) as the ground node) made of 4 identical positive resistances,
so that -y = 4m. Observe that a CNN is completely specified by the m-port cell
C(j, k) and the y-port coupling Fjk since they can be used as a template to build
up a CNN of any array size.

Since the conductance of all resistors in each layer "i" of the resistive grid in
Fig.7 is equal to the diffusion coefficient Di, which is assumed to be positive, it
follows that the 7-port coupling Fjk is passive. If the cell C(j, k) is not locally
active, then it follows from symmetry considerations and the qualitative theory of
nonlinear networks28 ,29'3 0 ,31 that the CNN must have a unique steady state solution,
thereby implying that all nodes belonging to the same layer must have identical
node-to-datum voltages. It follows that no patterns or dissipative structures can
exist.

In the general case, the "y-port coupling Fjk may consist of a nonlinear dy-
namical multi-port. In this case, the dynamics must again tend to a homogeneous
node voltage distribution on each resistor grid if both the m-port cell C(j, k) and
the F-port coupling Fjk are not locally active. The above analysis justifies the
following fundamental result on complexity:

The Local Activity Principle

A CNN associated with a homogeneous non-conservative (i.e., not lossless) medium
having a zero-flux boundary condition can not exhibit patterns or dissipative struc-
tures unless the cells, or the couplings, are locally active.

4 Local Activity for Reaction-Diffusion CNNs

In general, each cell C(j, k, 1) in a reaction-diffusion CNN has n state variables but
only m < n among them are coupled directly to its nearest neighbors via diffusion.

9A state variable xk is suppressed if its associated diffusion coefficient Dk is zero.
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In this case, the state equation of each cell C(j, k, 1) assumes the form

V1 (j, k, 1) = fi(Vi(j, k, 1), V2(j, k, 1), ... , V,(j, k, 1)) + DiV 2VI(j, k, 1)
V2 (j, k, l) = f 2 (Vi (j, k, 1), V2 (j, k, l), ... ,V,(j, k, l)) + D 2V

2V2 (j, k, l)

Vm,(j,k,l)= fm(Vl(j,k,l),V 2 (j,k,l),...,V,(j,k,l))+DmV 2 Vm(j,k,l)

•rýn+ l(j, k,l) -= f.+ l(Vl (j, k, ), V2(j, k, l), ... , V n(j, k,l)) (5

V. (j, k, 1) = f. (Vi• (j, k, 1 ), V2(j, V1) V.(j, k,, 1))

j = 1, 2, ... , N,;;k = 1, 2, ... , N-y; 1 = 1, 2, ... ,N,,.

Alternatively, we can include the remaining Laplacian terms D+ 1V2 Vm+ 1 (J, k, l),
Dm+2 V2 Vm+2 (j, k, l), ... , D,•V 2V,(j, k, l) in Eq.(5) and set Dm+ 1 Dm,+2

D, = 0. Recasting Eq.(5) into vector form, we obtain

Va fa(Va, Vb) + DaV 2 Va (6)

V'b = fb(Va, Vb) (7)

where

V. = [Vi(j, k, 1), V2 (j, k, 1), ...V (j, k, 1)]T (8)

Vb =[VY.+1 (j, k, 1), V,,+2 (j, k, 1), ...,(j, k) 1)]T (9)

fa : [f&(), f2(), ... fr(')] (10)

fb = [f.+1 ('), frn+2(), ..-f,(')] (11)

V2 Va= [v2v1 (j, k, 1), V2V2(j, k, 1), ... , V2Vm(j, k, 1)] (12)

D -- [ Dm ,D> 0 (13)

Dr.

To emphasize that a CNN is defined by specifying the dynamics of the cells and
their couplings (cell interaction laws), let us rewrite Eqs.(6)-(7) into the following
standard form 32:

cell dynamics:

Va = fa(Va, Vb) + Ia (14)

Vb = fb(V., Vb) (15)
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cell interaction laws:

I1 =ga (V,(j, k, 1), Va(j - 1, k, l), Va(j + 1, k, l), V,(j, k - 1, l), V,(j, k + 1, l),

V,(j, k, 1 - 1), V,(j, k, l + 1))

D, V 2 V2(j, k, 1)1
D V2 (j, k, l)

[Din] [ ..V(j, k, 1)1
It is important to observe that Eqs. (14)- (15) defining the cell dynamics involve only
the voltage variables (Va(j, k, 1), Vb(j, k, 1)) and the current variables Ia(j, k, 1) at
the same spatial location (j, k, 1),h whereas Eq.(16) defining the cell interaction laws
involves not only the voltage variable Va (j, k, 1) at spatial location (j, k, 1), but also
those of the neighboring cells. The relationship between a typical cell C(j, k, 1)
at location (j, k, 1) and its coupling network is shown in Fig.7 for a 2-dimensional
CNN reaction diffusion equation, where Va = [VI(j, k), V2 (j, k), ... , Vm(j, k)]T and
la = [I (j, k), I2(j, k), ... , Ima(j, k)]T are the "m" port voltage and port current vari-
ables. In the special case when m = 1, Fig.7 reduces to Fig.8(a), where cell C(j, k)
degenerates into a one-port.

4.1 Cell Equilibrium Points

Let us define the static characteristic of an isolated CNN cell by setting Va = 0
and Vb = 0 in Eqs.(14) and (15); namely,

fa(Va, Vb) + Ia = 0 (17)

fb(Va, Vb) = 0 (18)

where Va E R m , Ia C R m , Vb E Rn-m, f, c Rm, fb E R -. Solving Eq.(18) for
Vb in terms of Va, we obtain

Vb = g.(V.) (19)

where gaC() may be a multi-valued function of Va.
Substituting Eq.(19) for Vb in Eq.17, we obtain the following implicit and

possibly multi-valued function:

Static Cell
Characteristic G IWa) • fa (V, ga (Va)) + Ia = 0 (20)

hThis observation allows us to suppress the spatial coordinates in Eqs.(14)-(15) without ambiguity.
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Let us solve Eq.(20) for Va. In general, there can be many solutions Va = Va(Qi),
Va(Q 2 ), ... , V.(Qp) for each la = La E R m , where Va(Qi) denotes the port
voltage solution Va at the ith solution Qj. We call each solution Va = Va(Qi)
a cell equilibrium point associated with Ia = La C R m . In other words, each cell
equilibrium point Va (Qi) is parameterized by Ia E R m . The loci of all such cell
equilibrium points calculated explicitly at Ia = !a, as !a ranges over the entire m-
dimensional Euclidean space Rm is identical to the static cell characteristic defined
implicitly in Eq. (20).

4.2 Cell Complexity Matrix

Let Qj be a cell equilibrium point associated with Ia = Ia(Qi). Let Va(Qi) (ob-
tained from Eqs.(20)) be the corresponding cell equilibrium point of the cell state
equations Eqs.(14)-(15). Let

J(Qi) [Aaa(Qi) Aab(Qi) (21)
= [Aba(Qi) Abb(Qi)

denote the m x m Jacobian matrix associated with fa(Va, Vb) and fb(Va, Vb),
evaluated at (Va(Qi), Vb(Qi)), where Vb(Qi) ý ga(Va) from Eq.(19), namely,

Aaa(Qi) = afa(Va, Vb)
"OVa IVi=V.(Qi),Vb=Vb(Qi)'

Aab(Qi) = 19fa(Va, Vb)

Small Signal CNN Cell OVb IV.=V.(Qi),Vb=Vb(Qi)'

Coefficients at Qj Aba(Qi) = OVa V =V

= fb(Va, Vb) . (22)
Abb(Q8) - OVb V.=V.(Qx),Vb=Vb(Qi)

Let N(Qi) be the linearized CNN cell at Qj associated with the state Equations

(14)-(15) of the m-port cell C(j, k, 1) obtained by deleting the higher order terms
in the Taylor series expansion of fa(Va, Vb) and fb(Va, Vb) about Qj; namely,

Linearized CNN Cell Va AaaVa + AabVb + ia (23)
dynamics at Qi dab a AbaVa + AbbVb (24)

A A

where Va = Va - Va (Qi), vb = Vb - Vb(Qi), ia Ia - Ia(Qi) are the infinitesimal
voltages and currents, respectively, about the equilibrium point Qj.
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Definition 1: Local Activity

A CNN cell C(j, k, 1) is said to be locally active at Qj iff there exists some
ia,(t) and some time T > 0 such that

E(Qi) Aj < Va(t), ia(t) > dt < 0 (25)

where < .,. > denotes the vector dot product, and Va(t) is the solution
obtained by solving Eqs.(23)-(24) under zero initial state va(0) = 0 and

Vb(0) - 0.

To derive a test for local activity, let us take the Laplace transform of Eq. (24) to
obtain

Sira(S) = Aaaira(S) + Aabb (s) + ia(S) (26)

S4b(S) = Abaira(S) + Abbf/(S) (27)

where iza(s), 1b(S) and la(s) denote the Laplace transform of Va(t), vb(t), and
ia(t), respectively. Solving for 14b(S) from Eq.(27), we obtain

rb(S) (sl - Abb)- 1 Abair(S) (28)

Substituting Eq.(28) for 4b(S) in Eq.(26) and solving for ia(s), we obtain

l (S) = YQ (s)Va (S) (29)

where

CNN Cell Complex- ] A

ity Matrix at Qj YQ(s) = (sl - Aa) - Aab(Sl - Abb)-Aba (30)

is called the CNN cell complexity matrix at the cell equilibrium point Qj. It

follows from a classic theorem in circuit theory 33 that for a reaction diffusion
CNN Cell to be locally active at Qj, YQ(s) should not be a positive real matrix at
Qj. Hence, in order for a reaction diffusion CNN equation to exhibit complexity,
it is necessary that the cell parameters be chosen such that the cell complexity

matrix YQ (s) is not positive real at Qj. The mathematical conditions for testing
this local activity property is as follows:
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Local activity criteria for reaction diffusion CNN

A Reaction Diffusion CNN Cell is locally active at a cell equilibrium point Qj
if, and only if, its cell complexity matrix YQ (s), or its inverse cell complexity

matrix ZQ(s) Y YQ1 (s) (In this case, simply change the symbol from Y
to Z in the following 4 conditions) satisfies any one of the following 4
conditions:
1. YQ(s) has a pole in Re[s] > 0.

2. YH(io) A= Y1(iw) + YQ(iw) is not a positive semi-definite matrix at
some w = w0 , where wo is any real number, and t denotes the Hermitian
operator.
3. YQ(s) has a simple pole s = iwcp on the imaginary axis where its

associated residue matrix

KA A lims8 iWP(s - iwp)YQ(s), if Lop < 0oK1 = ,. Y(iw•)ifw 01

Yiwpiirlln.p-c E-P , if UaP = 0e0

is either not a Hermitian matrix, or else not a positive semi-definite Her-
mitian matrix.
4. YQ(s) has a multiple pole on the imaginary axis.

4.3 Reaction Diffusion CNN: One Diffusion Coefficient

Many well-known reaction diffusion CNNs have only one non-zero diffusion coeffi-
cient and 2 state variables, i.e., m = 1, n = 2. The most famous example belonging
to this class is the FitzHugh Nagumo CNN Equation given in Table 1. For this class
of reaction diffusion CNN, all variables in Eq. (24) are scalars and let us rewrite it
using the established notation 22 for ease of reference:

i)1 = allv1 + a12v2 + il

)2 = a 21v1 + a 22v2 (31)

The inverse CNN cell complexity matrix Y A(s) Z(s) = - () associated withTi= i(s)
Eq.(31) is a 1 x 1 matrix, or scalar function of s in this case, and is given by

(s - a 22) (32)
s -Ts+A

where

T = all + a 22  (33)

A = a 1 1a 2 2 - a 12 a 21  (34)

are the trace and determinant of the associated Jacobian matrix

J(Qi) = [a 1l a12  (35)

1 a21 a22 1(3r

evaluated at the cell equilibrium point Qj.
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Applying the above local activity criteria to this special scalar case (with YQ (s)
replaced by ZQ(s)), we obtain the following useful corollary:

Local Activity Criteria for One Diffusion Coefficient A one-port Reaction-Diffusion
CNN cell with one diffusion coefficient and two state variables is locally active at
a cell equilibrium point Q = (V1, I1) if, and only if, any one of the following 4
conditions holds at Q:

1. all + a 2 2 > 0 or alla22 < a1 2 a 21 .

2. all > 0, or al1 > !a-u, if all <0anda 22#0.

3. alia 2 2 > a 12 a 21 , all + a 22 ý 0 and a 22 • 0.

4. aj1 a 2 2 = a 1 2a 21 , all + a 22 ý 0, and a 22 • 0.

(36)

Although the above local activity criteria is couched in terms of the 4 Jacobian
coefficients all, a 12, a21 and a 22 , the criteria can be recast into the following 4
equivalent conditions involving only the 3 parameters A, T, and a 22 :

Equivalent condition 1: T > 0, or
A<0

Equivalent condition 2: T > a 22 , or
T < a 22 and a 22A > 0

Equivalent condition 3: T = 0, and (37)
A > 0 and
a2 2 : 0

Equivalent condition 4: T = 0, and
A = 0 and

a 2 2 = 0

To visualize the regions in the A-T-a 22 Euclidean space represented by the above
system of inequalities, it is more convenient to consider a A-T-a22 cylindrical sub-

space and partition it into 8 uniform wedges above A = 0, and 8 uniform wedges
below A = 0, as depicted in Fig.9. In terms of the A-T-a 22 cylinder, Equivalent
condition 1 is represented by all points (a 22 , T, A) behind the vertical separating
plane T = 0, and all points below the horizontal separating plane A = 0. E uiva-

lent condition 2 is represented by the wedges labeled [-1, 5 -, 7, and

8] in the upper half (A > 0)
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Gee

0Layer 1

kV2J'ka. * *0 *1*~k

Figure 7. A 2-dimensional reaction-diffusion CNN having "in" non-zero diffusion coeffcients
(Di $ 0,i = 1,2,...,m). The subscript "i" attached to (ji,ki) denotes the node in the ith re-

sistive grid layer which is connected to a terminal of cell C(j, k). All resistors in layer i are linear

resistors with identical conductance equal to Di Siemens, i = 1, 2, ... , m.
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V1 (j-1,k) V1 (j,k-1)

D1 D1

I16(,k+1) '••• D1 11(0+1,k)

V, (j,k~l) I VJ') , vl(6+1,k)

SI . V1 k)k

Cell C (jk)

(a)

+ +
F e ( nl cC •i 8.a)A• cl c c V 1 (j,k)

v, ,-,k)- v (i ~f i•..

I16l(,k+1) 116(+1,k)

V, (O,k+ 1)-- V1 Oj,k) vl, 01k- ,Ok

(b)
Figure 8. (a) An isolated cell CQj, k) from Fig.5 with its 4 coupling conductances DI. (b) The

5-terminal circuit rjk in (a) is equivalent to a 4-port where the bold wires form the common
"ground" terminal of each port.
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cylinder. Equivalent condition 3 is represented by the vertical separating
plane(excluding the vertical axis) in the upper half (A > 0) cylinder. Equiva-
lent condition 4 is represented by a single point at the origin. It follows from this
partitioned cylinder that a reaction diffusion CNN with one diffusion coefficient and
two state variables is locally active at a cell equilibrium point Q if, and only if, its
associated parameter (a 22 (Q), T(Q), A(Q)) at Q lies outside of the "blue" sector

F6]in the upper half cylinder.

4.4 Reaction Diffusion CNN: Two Diffusion Coefficients

Consider next the class of reaction diffusion CNNs with two diffusion coefficients
(D 1 > 0 and D 2 > 0) and two state variables, i.e., m = n = 2. Both the Brusselator
and the Meinhardt-Gierer CNN equations in Table 1 belong to this class. In this

case, the CNN cell is a 3-terminal (including the ground reference terminal), or
2-port, device whose linearized cell dynamics about an equilibrium point Qj is

described by

=)1 = allv1 + a 12v2 + il

i)2 = a 2 1v1 + a 22v2 + i2  (38)

where a11 , a 12, a 21, and a 22 are the small-signal cell coefficients at Qj defined in
Eq. (35). Applying the local activity criteria from section 4.2 to the associated 2 x 2
cell complexity matrix YQ(s) at Qj, we obtain the following corollary:

Local activity criteria for two diffusion coefficients
A two-port reaction-diffusion CNN cell with two diffusion coefficients and two

state variables is locally active at a cell equilibrium point Q = (V1, 1/2, /1, 12) if,
and only if, any one of the following two conditions holds at Q:

1. a 22 > 0

2. 4alia 22 < (a 12 + a21 )2 (39)

For a detailed application of the various local activity criteria presented in Sections
4.3 and 4.4 to concrete examples; namely, the FitzHugh-Nagumo Equation, the
Brusselator Equation, and the Gierer-Mainhardt Equation, the reader is referred
to 34, 35 and 36, respectively.

5 Concluding Remarks

The preceding analysis can be generalized to any homogeneous media which can be

mapped to a CNN defined by any cell dynamics, and any cell interaction laws, not
necessarily of the reaction diffusion type presented in Section 4. In particular, the
coupling y-port FjkI can be any nonlinear dynamical multi-port. In such cases, in
order for the CNN to exhibit complexity, either the m-port cell Cijk, or the
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A = a,, a22 - a!2 a 21

Vertical
- separating T 0 0A > 0 I I ane >0

a 22< T <0 0102 T < Q' a22 >0

A >0
a, < T <0 T=all +a22

Horizontal
separating
plane - : a22

A=0

Figure 9. The A-T-a22 cylinder depicting the locally passive region represented by wedgeF6] in

the upper half cylinder. All other regions are locally active. In particular, regions F]5l, M and

] in the upper half cylinder A > 0 correspond to the edge of chaos where most complexities
emerged.
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coupling y-port FiJk, must be locally active at some equilibrium point of the isolated

(disconnected from the rest of the CNN) cell Cijk, or isolated -y-port coupling Fjkl.
While the CNN paradigm is an example of REDUCTIONISM par excellence,

the true origin of emergence and complexity is traced to a much deeper new con-
cept called local activity. The numerous complex phenomena unified under this
mathematically precise principle include self organization, dissipative structures,
synergetics, order from disorder, far-from- thermodynamic equilibrium, collective be-

haviors, edge of chaos, etc.
The central theme of the local activity dogma 22 asserts that the somewhat fuzzy

notions of "emergence" and "complexity", as well as their various metamorphosis,
such as those cited above, can all be rigorously explained by a precise scientific
paradigm abstracted mathematically from the principle of conservation of energy;
namely, a CNN operating near the edge of chaos 34,37, where the cells are not only
locally active, but also linearly asymptotically stable. In particular, constructive
and explicit mathematical inequalities are given for identifying the region in the
CNN parameter space where complex phenomena may emerge, as well as for
localizing it further into a relatively small parameter domain called the edge of
chaos (regions E, n7, and n in Fig.9) where the potential for emergence is
maximized.

Consequently: he who wants to have right without wrong,
Order without disorder,
Does not understand the principles
Of heaven and earth.
He does not know how
Things hang together.

Chuang Tzu
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